یک رابطه ماتریسی برای نامساوی گراس

پایان نامه
چکیده

در این رساله به این موضوع پرداخته می شود، که نامساوی اثر یک ماتریس می تواند به عنوان یک نسخه غیر جابجایی در نظر گرفته شود که از نامساوی گراس ناشی می شود. به سادگی اثبات حالت کلی تری از یک عملگر خطی کراندار روی یک فضای هیلبرت تعمیم داده می شود.

منابع مشابه

نامساوی پوپویچی برای توابع ماتریسی با توان منفی

در این مقاله، با استفاده از مقادیر ویژه ماتریس‌ها و نامساوی عددی پوپویچی، این نامساوی برای اثر ماتریس‌های مثبت بیان شده است. به علاوه، با در نظر گرفتن توابع ماتریسی با توان منفی، نامساوی‌های ماتریسی از نوع پوپویچی به دست آمده است. نتایج به دست آمده در این مقاله، معکوس نامساوی‌های ماتریسی شناخته شده هستند.

متن کامل

نامساوی های یانگ ماتریسی

نامساوی ها یکی از مهمترین حوزه های پژوهشی آنالیز ماتریسی هستند که از ابتدا مورد علاقه بسیاری از ریاضی دانان بوده و کاربردهایی در علوم مختلف از جمله محاسبات علمی، نظریه سیستم و کنترل، تحقیق در عملیات، فیزیک ریاضی، استاتیک، اقتصاد و مهندسی دارد. نخستین بار در سال $1934$ کتاب تقریبا جامعی با نام "نامساوی ها" cite{h} توسط هاردی، ltrfootnote{g. h. hardy} لیتل وود ltrfootnote{e. little...

15 صفحه اول

مساوی ها و نامساوی های نرمی برای عملگرهای ماتریسی

در این پایان نامه چندین مساوی و نامساوی نرمی برای عملگرهای ماتریسی را بیان می کنیم. این نتایج به ساختار عملگرهای ماتریسی چرخشی (متقارن) شامل نامساوی نوع پینچینگ برای نرم های بطور ضعیف یکانی پایا وابسته اند همچنین بیان می کنیم که نامساوی پینچینگ نرم های بطور ضعیف یکانی پایای a را کاهش می دهد. نامساوی های نرمی را برای بدست آوردن نامساوی های نوع پینچینگ بکار می بریم همچنین شرایط مساوی در این نام...

15 صفحه اول

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه لرستان - دانشکده علوم پایه

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023